In Vitro Recovery of ATP-Sensitive Potassium Channels in β-Cells From Patients With Congenital Hyperinsulinism of Infancy
نویسندگان
چکیده
OBJECTIVE Congenital hyperinsulinism in infancy (CHI) is characterized by unregulated insulin secretion from pancreatic β-cells; severe forms are associated with defects in ABCC8 and KCNJ11 genes encoding sulfonylurea receptor 1 (SUR1) and Kir6.2 subunits, which form ATP-sensitive K(+) (K(ATP)) channels in β-cells. Diazoxide therapy often fails in the treatment of CHI and may be a result of reduced cell surface expression of K(ATP) channels. We hypothesized that conditions known to facilitate trafficking of cystic fibrosis transmembrane regulator (CFTR) and other proteins in recombinant expression systems might increase surface expression of K(ATP) channels in native CHI β-cells. RESEARCH DESIGN AND METHODS Tissue was isolated during pancreatectomy from eight patients with CHI and from adult cadaver organ donors. Patients were screened for mutations in ABCC8 and KCNJ11. Isolated β-cells were maintained at 37°C or 25°C and in the presence of 1) phorbol myristic acid, forskolin and 3-isobutyl-1-methylxanthine, 2) BPDZ 154, or 3) 4-phenylbutyrate. Surface expression of functional channels was assessed by patch-clamp electrophysiology. RESULTS Mutations in ABCC8 were detected for all patients tested (n = 7/8) and included three novel mutations. In five of eight patients, no changes in K(ATP) channel activity were observed under different cell culture conditions. However, in three patients, in vitro recovery of functional K(ATP) channels occurred. Here, we report the first cases of recovery of defective K(ATP) channels in human β-cells using modified cell culture conditions. CONCLUSIONS Our study establishes the principle that chemical modification of K(ATP) channel subunit trafficking could be of benefit for the future treatment of CHI.
منابع مشابه
Pharmacological rescue of trafficking-impaired ATP-sensitive potassium channels
ATP-sensitive potassium (KATP) channels link cell metabolism to membrane excitability and are involved in a wide range of physiological processes including hormone secretion, control of vascular tone, and protection of cardiac and neuronal cells against ischemic injuries. In pancreatic β-cells, KATP channels play a key role in glucose-stimulated insulin secretion, and gain or loss of channel fu...
متن کاملDominantly inherited hyperinsulinism caused by a mutation in the sulfonylurea receptor type 1.
ATP-sensitive potassium channels play a major role in linking metabolic signals to the exocytosis of insulin in the pancreatic beta cell. These channels consist of two types of protein subunit: the sulfonylurea receptor SUR1 and the inward rectifying potassium channel Kir6.2. Mutations in the genes encoding these proteins are the most common cause of congenital hyperinsulinism (CHI). Since 1973...
متن کاملTherapy for Persistent Hyperinsulinemic Hypoglycemia of Infancy
The neonatal disorder persistent hyperinsulinemic hypoglycemia of infancy (PHHI) arises as the result of mutations in the subunits that form the ATP-sensitive potassium (K ATP ) channel in pancreatic b cells, leading to insulin hypersecretion. Diazoxide (a specific K ATP channel agonist in normal b cells) and somatostatin (octreotide) are the mainstay of medical treatment for the condition. To ...
متن کاملAnti-nociceptive effect of cimetidine in mice: the role of ATP-sensitive potassium channels
Recent studies have shown that intracerebroventricular administration of cimetidine (CIM) induces anti-nociceptive and anti–inflammatory effects in rats. However, the underlying mechanism of CIM effect has not been determined yet. This study was planned to determine the anti-nociceptive effect of CIM (50 mg/kg, i.p.) in male mice (25-30 g, n = 80) using tail flick test. Also, the role of ATP-se...
متن کاملDiazoxide-Unresponsive Congenital Hyperinsulinism in Children With Dominant Mutations of the β-Cell Sulfonylurea Receptor SUR1
OBJECTIVE Congenital hyperinsulinemic hypoglycemia is a group of genetic disorders of insulin secretion most commonly associated with inactivating mutations of the β-cell ATP-sensitive K(+) channel (K(ATP) channel) genes ABCC8 (SUR1) and KCNJ11 (Kir6.2). Recessive mutations of these genes cause hyperinsulinism that is unresponsive to treatment with diazoxide, a channel agonist. Dominant K(ATP) ...
متن کامل